Search Clear Form

Search Clear Form

Search Clear Form

Search Clear Form

Bearing Lubrication Problems

In a perfect world, bearings would barely be thought about because they’d perform so well. But, bearing problems and bearing failures do happen quite often.

The good news is a lot of times you can prevent bearing problems from occurring. This article will explain 8 common bearing problems and how to prevent them so you don’t have to experience a bearing failure.

Lubrication can either be a blessing or a thorn in your side. It’s probably no surprise that problems 1-3 are caused by bearing lubrication issues.

Lubrication is a leading cause of bearing problems. Most people understand that the balls inside a bearing should never ride directly against the bearing raceway. The tricky part is knowing how much or how little lubrication a bearing needs.

First, let’s quickly explain the science of bearing lubrication. A ball bearing has a curved raceway, so, the relative motion between the ball and the raceway will always produce skidding. For this reason, there needs to be a protected film of lubrication between the balls and raceway that prevents metal-on-metal skidding from occurring.

All that being said, here are the top three common issues you could run into with bearing lubrication, and what you can do to prevent them.

Not Enough Bearing Lubrication

If there isn’t enough lubrication a direct metal-to-metal contact will occur and cause friction that produces destructive heat.

You can usually identify this problem by looking at the bearing and seeing discoloration on the ball and raceway. It can also appear as an overloading failure because the heat causes the bearing ring to expand, increasing the resultant load to the bearing.

Your Bearing is Rotating Faster Than the Grease Rating

If you’re using grease lubrication, make sure to check the speed rating for the grease.

If your bearing is rotating faster than the grease rating, the oil won’t have time to re-adhere with the thickener after the ball (or another rolling element) passes over it, causing the bearing to overheat.

If a bearing overheats, it could cause a catastrophic failure of the overall system.

Make sure to also check the grease life. If the grease life is expired then the grease will start to break down, preventing it from creating that repeated oil film as the balls roll over it.

Your System is Too Hot or Too Cold

If the system temperature is too high, the viscosity of the grease can decrease drastically which prevents the grease from staying where it’s needed in the bearing.

On the flip side, if the system temperature is too low, the viscosity can become too thick making the bearing work extra hard to push through and separate the oil and thickener as the balls pass over the grease.

Protect the bearing from poor lubrication issues by choosing a lubricant that maintains an adequate, thick film under your application’s operating temperature.

To maximize the life of the lubricant, consider the system life, temperatures, viscosity, and speed when selecting the lubrication.

Bearing Contamination

Another common cause of bearing failure is contamination. Contamination happens when particles enter the bearing raceway during operation and become pressed between the balls and the bearing raceway.

As the balls keep rolling over the particles, craters are formed on the raceway leading to machine vibration and excessive heat generation.

To identify bearing contamination, take a look at the raceways and see if you can spot an indentation or a crater. Hard contamination tends to leave sharp edges around the crater, and soft contamination tends to leave smoother edges.

You may also see a “comet tail” on one side of the crater. This is from the ball hitting the edge of the crater and then going back out smoothing that edge along the way.

Prevent Bearing Contamination

If you have an application that operates in “dirtier” environments, then here are some best practices to keep away contamination:

  1. Purchase bearings with seals or shields
  2. Add a non-contact labyrinth seal to your application design. Labyrinth seals are added in front of the bearing to protect it from all types of dirt, debris, and contamination.
  3. If clean pressurized air is available, then pressurize the bearing compartment to push out any contamination that may have gotten inside the raceways.
Overloaded Bearings

Overloaded bearings occur when the pressure between the balls and bearing raceway becomes too high resulting in plastic deformation. This is usually caused by excessive bearing loads.

If this is happening to your application, here is how to spot where the excessive load is coming from:

  • Too much axial load results in uniform deformation on both the inner and outer bearing raceway.
  • In systems with a rotating shaft and too much radial load, the inner raceway will show uniform deformation.
    • This is from the shaft rotating through the pinch point of the bearing with the outer raceway remaining stationary.
    • You should be able to spot a “load zone” on the outer race where the deformation is the most noticeable, directly at the pinch point.

How Bearings Become Overloaded

The most common reason for overloaded bearings is excessive loads like we mentioned above, but there are other less common sources of overloading, like:

  • Improper bearing installation, causing excessive loading to occur
  • Centrifugal forces from the rolling element (if rotating at very high speeds)
  • Shaft imbalances
    • Shaft imbalances have similar characteristics to a radial load but flipped. The inner race will have the load effected zone since the radial load is stationary relative to the inner race. The outer race will have uniform damage since the radial load is rotating around it.

Overloading can have similar symptoms as contamination. Both issues create craters on the surface of the raceway which will cause excessive vibration and/or heat.

How To Fix Overloaded Bearings

If you think you have an overloaded bearing issue, then here are some helpful tips to correct the problem, depending on what the cause is:

  • If overloading is from excessive axial or radial loads: add bearings or change the bearing size to reduce the pressure on each individual bearing.
  • Adjust the contact angle on an angular contact bearing to optimize for the specific type of load.
  • If overloading is from high rotational speeds, switch to ceramic balls because they have a lower ball weight. Also purchase a bearing with smaller balls, like our KH series of angular contact ball bearings. These options will decrease the centrifugal forces at high speeds.
Underloaded Bearings

Underloading damage occurs when there is not enough force between the rolling elements and raceways. This can cause the balls in the bearing to slip and skid against the raceway which results in excessive heat. This type of damage is more common in high-speed applications.

If this is happening to your application, here is how to spot it:

  • Check the balls in the bearing, if you can see several distinct circumferential lines (also called “Saturn rings”) then you may have an issue of underloaded bearings.

Protect against underloaded bearing damage by properly preloading your bearings. Preloading a bearing means applying an axial force (independent of the application force) against the raceway to prevent skidding. This can be done using bearing offsets or wave springs, among other methods.

Bearing Cage Damage

Bearing cage damage is usually the result of something else going on in the application.

For example, underloading and rapid acceleration can cause the rolling elements to bang against the sides of the cage pockets. If the issue is underloading, increasing the preload can help limit the amount of relative movement of the rolling element in the cage pocket. For rapid accelerations, a stronger cage material like brass or bronze can be used.

For certain cages, like ones with phenolic material, high temperatures can cause the cages to dry out and become brittle. Force from a ball (or another rolling element) can then bang against the cage and cause it to become damaged and even fail.

Cage damage can also occur from any of the above issues we’ve already covered like contamination and excessive loading. These problems can cause the balls to bounce around in the ball pocket of the cage and result in catastrophic damage to the cage. So, finding and analyzing the source of the cage damage is a necessary first step to preventing further cage damage.

Bearing Damage From Micro-Fretting

Micro-fretting is caused by the rubbing of two materials against each other.

Bearing micro-fretting can look like small rust spots on the surface but is the result of brown oxidation forming from the friction generated by the rubbing. It occurs in bearings when the fit between the outer ring and the housing or the inner ring and the shaft is too large.

Correct bearing micro-fretting by decreasing the slip fit or going to a press-fit between the two mating components. An axial clamping force can also be used to make sure the ring of the bearing doesn’t slip.

To Conclude

Bearing problems and failures happen more often than you might expect. Hopefully, these 8 common bearing issues and solutions will help prevent a bearing failure from happening to your application.

If you would like an engineer to help you diagnose a bearing failure, contact us. Our engineers can either assist or perform a bearing failure analysis for your application.

Request A Quote

Click the button or give us a call at 800.323.5725 today.

Get Your Quote

Desktop Tablet Mobile